Calamitic liquid crystals containing metal–metal bonds: design of mesomorphic materials based on the $Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2$ sawhorse unit \dagger

Robert Deschenaux,* Bertrand Donnio, Gerd Rheinwald, Frédéric Stauffer, Georg Süss-Fink* and Jörg Velker

Institut de Chimie, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland

A series of complexes based on the stable $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2]$ sawhorse unit has been prepared and characterized. The derivatives $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2\{NC_5H_4(CO_2C_6H_4OC_nH_{2n+1}-p)-p\}_2]$ (R = H, n = 10; R = C_6H_5 , n = 6, 10, 12, 14 or 16; R = $C_6H_4CH_3$ -p, n = 10; R = $C_6H_4OCH_3$ -p, n = 6, 10 or 16) proved to be mesomorphic, giving rise to nematic phases.

A century after their discovery, liquid crystals have made possible an unrivalled development in the technology of watch displays, calculators, mobile telephones and notebook computers.² With the rapidly growing interest in this field, special attention has been paid to metallomesogens which combine the physical characteristics of metal complexes (e.g. polarizability, colour, magnetism) with those of organic molecules which form liquid crystals.3 Mesomorphic materials containing covalent metalmetal bonds are rare. The first examples of this type are the complexes $[Rh_2(\mu\text{-}\eta^2\text{-}O_2CC_nH_{2n+1})_4],$ reported by Marchon and co-workers, which form columnar phases, the derivative with n = 7 showing an Rh–Rh distance of 2.38 Å. The air-sensitive $Ru^{II}Ru^{II}$ complexes $[Ru_2(\mu-\eta^2-O_2CC_nH_{2n+1})_4]$ formally contain an Ru=Ru double bond, whereas the mixed-valence RuIIRuIII complexes $[Ru_2(\mu-\eta^2-O_2CC_nH_{2n+1})_5]$ are paramagnetic, both series also forming columnar phases.

New mesomorphic dinuclear metal–metal bonded complexes have recently been published. Serrano and co-workers reported a series of dirhodium(II) tetrabenzoate complexes containing a single metal–metal bond, which displayed columnar mesophases. Chisholm and co-workers prepared liquid-crystalline compounds containing Mo–Mo or Cr–Cr quadrupole bonds, which exhibited hexagonal columnar phases. Finally, Serrano and co-workers a described the thermal behaviour of a series of β-diketonatothallium(I) complexes. Some of the compounds displayed a monotropic hexagonal columnar phase. The authors suggested that the mesomorphic properties resulted from the dimeric nature of the complexes. This assumption was based on the single-crystal X-ray analysis of a non-mesomorphic homologue, which showed strong Tl–Tl bonding interactions.

In order to design diamagnetic, calamitic metallomesogens containing an Ru–Ru core with a covalent single metal–metal bond we have chosen the stable $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2]$ sawhorse unit. Complexes of this type were first discovered by Lewis and co-workers who reported in 1969 the formation of the polymers $[\{Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2\}_n]$ by refluxing $[Ru_3(CO)_{12}]$ in the corresponding carboxylic acid RCO_2H ; these polymers dissolve in co-ordinating solvents [tetrahydrofuran(thf) or MeCN] to give the dinuclear complexes $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2]$. Both the polymers and the dinuclear species were shown later to contain an $Ru_2(CO)_4$ sawhorse moiety by a

single-crystal structure analysis of the derivatives [{Ru₂(CO)₄-(μ - η ²-O₂CC₆H₅)₂}_n] (Ru–Ru 2.64 Å)¹⁰ and [Ru₂(CO)₄(μ - η ²-O₂CBuⁿ)₂(PBu^t₃)₂] (Ru–Ru 2.73 Å).¹¹ Owing to the stability of the Ru–Ru backbone in this type of compound, a considerable number of representatives containing the Ru₂(CO)₄(μ - η ²-O₂CR)₂ moiety has been prepared and characterized.¹²

Results and Discussion

Synthesis and characterization

Two possibilities have been considered to induce mesomorphic properties in the complex of type $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2]$ (above) since both L and R can be varied: (a) introduction of promesogenic ligands L in the axial positions (with small R), which leads to molecules of linear shape, and (b) introduction of large substituents R into the two bridging carboxylato ligands (the axial ligand L being small), which gives an orthogonal shape to the molecules.

In a previous study ¹³ we have shown that diruthenium complexes with low melting points are accessible by using either phosphine ligands with long aliphatic chains in the axial positions L or carboxylato ligands containing long aliphatic substituents R. These compounds, however, did not show mesomorphic properties. ¹³ We therefore decided to synthesize diruthenium complexes containing pyridine ligands in the axial positions and to introduce not only aliphatic chains but also aromatic rings into the molecules. The variations of the ligands L and the substituents R are shown in Scheme 1.

All compounds 1–18 were prepared by treating $[Ru_3(CO)_{12}]$ with the corresponding carboxylic acid RCO_2H in tetrahydrofuran solution at 110–125 °C (using a pressure tube), followed by an exchange reaction at 25 °C with L. The yields, spectroscopic characteristics and microanalytical data are given in the Experimental section. The preparation and the spectroscopic data of the carboxylic acid and pyridine derivatives used for the synthesis of 1–18 are given in SUP 57291.

Thermal and mesomorphic properties

The thermal and liquid-crystalline behaviours of the complexes

[†] Supplementary data available (No. SUP 57291, 5 pp.): preparative and characterization details for reagents. See *J. Chem. Soc.*, Dalton Trans., 1997, Issue 1.

 $3[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2(thf)_2] + 12 CO + 3 H_2$

 $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2(thf)_2] + 2 L$

 $[Ru_2(CO)_4(\mu-\eta^2-O_2CR)_2L_2] + 2 \text{ thf}$

```
\begin{array}{l} R = C_{6}H_{4}OC_{10}H_{21}\text{-}p \\ R = C_{6}H_{4}(CO_{2}C_{6}H_{4}OC_{10}H_{21}\text{-}p)\text{-}p \\ R = C_{6}H_{4}[CO_{2}C_{6}H_{4}(O_{2}CC_{6}H_{4}OC_{10}H_{21}\text{-}p)\text{-}p]\text{-}p \end{array}
                                                                                                                                                                                          L = NC_5H_5
L = NC_5H_5
                                                                                                                                                          L = NC_5H_4OC_{10}H_{21}-\tilde{p}
         R = CH_3

R = CF_3
                                                                                                                                                         L = NC_5H_4OC_{10}H_{21}-p

L = NC_5H_4OC_{10}H_{21}-p
                                                                                                                 \begin{array}{c} L = NC_5H_4OC_{10}H_{21}\text{-}p \\ L = NC_5H_4(CO_2C_6H_4OC_{10}H_{21}\text{-}p)\text{-}p \\ L = NC_5H_4(CO_2C_6H_4OC_{10}H_{21}\text{-}p)\text{-}p \end{array}
         R = C_6 H_5
R = H
          R = CF_3
         R = C_6H_5
R = C_6H_5
                                                                                                                 \begin{array}{l} L = NC_5 H_4(CO_2 C_6 H_4 O C_1 0 H_{21} P_1) - p \\ L = NC_5 H_4(CO_2 C_6 H_4 O C_1 0 H_{21} P_1) - p \\ L = NC_5 H_4(CO_2 C_6 H_4 O C_1 0 H_{21} P_1) - p \\ L = NC_5 H_4(CO_2 C_6 H_4 O C_{12} H_{25} - p) - p \\ L = NC_5 H_4(CO_2 C_6 H_4 O C_{14} H_{29} - p) - p \end{array} 
         R = C_6H_5
R = C_6H_5
12
13
14 R = C_6H_5
15 R = C_6H_4OCH_3-p
                                                                                                                   L = NC_5H_4(CO_2C_6H_4OC_{16}H_{33}-p)-p
                                                                                                                  L = NC_5H_4(CO_2C_6H_4OC_6H_{13}-p)-p

L = NC_5H_4(CO_2C_6H_4OC_{10}H_{21}-p)-p
16 R = C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>-p
17 R = C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>-p
                                                                                                                  L = NC_5H_4(CO_2C_6H_4OC_{16}H_{33}-p)-p
                                                                                                                  L = NC_5H_4(CO_2C_6H_4OC_{10}H_{21}-p)-p
```

Scheme 1 Synthesis of complexes 1–18

prepared were examined by a combination of polarized optical microscopy (POM), differential scanning calorimetry (DSC) and thermogravimetry. The transition temperatures and enthalpy changes are listed in Table 1.

No mesomorphic properties were observed for complexes 1-7 and 9. When heated they directly and clearly melted into the isotropic liquid. Upon cooling from the isotropic melt, crystallization was detected only for complexes 4, 5, 7 and 9. The lack of liquid-crystalline behaviour of 1-7 and 9 could be explained in terms of their structures. In the case of 1-3 the complexes have two promesogenic carboxylato ligands lying in two perpendicular planes leading to an 'L'-shape structure. Such a structure does not have the appropriate molecular anisotropy responsible for generating mesomorphism. As for 4-7 and 9, despite the presence of larger substituted pyridine ligands in the axial positions, which enhance the molecular anisotropy along the metal-metal bond (as compared to 1-3), the lack of mesomorphism is, most likely, the consequence of too weak intermolecular interactions due to the bulky organometallic central core. Interestingly, compound 8, functionalized by the smallest substituent (i.e. R = H) in the bridging positions gave an enantiotropic nematic phase. The latter was identified from its typical schlieren texture and from the formation of nematic droplets. Upon cooling, the observation of transition bars suggested the formation of a monotropic smectic C phase (which appeared when the sample crystallized). The nematic-to-smectic C phase transition was not detected by DSC, most likely because of its rather small temperature range. The occurrence of mesomorphism for 8 was not unexpected as, when compared with 4–7 and 9, it has the highest length/width molecular anisotropic ratio. Since complex 8 showed limited thermal stability as detected by DSC, this substitution pattern was not investigated further.

All the mesomorphic complexes 10–18 displayed a nematic phase, which was found to be enantiotropic for 10–14, 17 and 18, and monotropic for 15 and 16. The nematic phase was identified from the formation of typical marbled and threaded textures which developed on heating the sample (in the case of the enantiotropic compounds), and from the observation of the *schlieren* texture characterized by two and four brushes (for all the compounds) on cooling the sample from the isotropic melt.

In the series 10–14 the length of the terminal chains was varied from 6 to 16 carbon atoms. All compounds, with the exception of 12, gave a crystal-to-crystal transition in the first

Table 1 Phase-transition temperatures ^a and enthalpy changes of complexes 1–18

Compound	Transition	T/°C	$\Delta H/\text{kJ mol}^{-1}$
1	K–I	137	58.7
2	K–I K–I	149	58.5
3	K–I K–I	180	60.4
4	K–I K–I	120	56.2
5	K–I K–I	103	34.5
6	K-I	77	42.4
7	K–I	144	35.4
8 ^b	K-N	147	41.3
Ü	N–I	156	2.8
9	K–I	122	67.6
10	K-N	189	36.5
	N–I	225	2.5
11	K-N	163	34.7
	N–I	206	2.4
12	K-N	166	48.2
	N–I	195	2.8
13	K-N	156	49.2
	N–I	185	2.5
14	K-N	150	42.9
	N-K'	155	-2.0
	K'-N	161	4.1
	N–I	179	2.9
15	K–I	181	51.9
	I–N	176	2.7
	N-G	83	_
16	K–I	152	45.9
	I–N	151	2.0
17	K-N	137	_
	N-I	146	49.8°
18	K-N	163	_
	N–I	173	48.3°

"K, K' = Crystalline states, N = nematic phase, I = isotropic liquid, G = frozen mesophase. ^b A monotropic smectic C phase formed near 135 °C during the crystallization process (see main text). ^c Cumulated enthalpies (peak overlap).

heating run. In the case of the hexadecyloxy derivative 14, besides the crystal-to-crystal transition, the following phase sequence was observed before entering into the isotropic liquid: crystal \longrightarrow nematic phase \longrightarrow crystal \longrightarrow nematic phase. This behaviour was reproducible for successive heating runs (on cooling the following sequence was observed: isotropic liquid \longrightarrow nematic phase \longrightarrow crystal). Such a melting-crystallization-melting process has been observed for other metallomesogens. ¹⁴

Substitution in the para position of the benzene ring by a methoxy group (series 15-17) destabilized the nematic phase which resulted in the formation of a monotropic mesophase for 15 and 16 (compare 15 with 10 and 16 with 11); enantiotropic behaviour was observed only for 17 which has the longest alkyloxy chains. It is likely that the incorporation of the methoxy group into the benzoato bridges led to a reduction of the intermolecular interactions and thus to a reduction of the clearing point (this effect being less pronounced in the case of the melting point; compare 10, 11 and 14 with 15, 16 and 17, respectively). Upon cooling, the decyloxy derivative 16 did not crystallize but formed a glass ($T_g = 46$ °C). On heating, the frozen nematic state remained as such until 86 °C, at which temperature crystallization occurred. At 152 °C, 16 melted into the isotropic liquid. This behaviour was reproducible over several heating-cooling cycles. The formation of anisotropic glasses has been reported in the case of metallomesogens 15 and is of great interest in liquid-crystal display (LCD) technology, particularly for the manufacturing of optical information-storage devices. 15c,d

The mesomorphic behaviour of complex 18 was found to be intermediate between those of 10–14 and of 15 and 16 in as much as it displayed an enantiotropic nematic phase, but with a

Table 2 Synthetic experimental conditions and analytical data for complexes 1–18

		.			X 7' 1 1	Analysis (%)*		
Complex	RCO ₂ H m/mg	Reaction <i>T</i> /°C	Reaction <i>t</i> /h	Crystallization solvent	Yield (%)	C	Н	N
1	130	120	24	CH ₂ Cl ₂ -pentane	66	56.1	5.8	2.7
2	187	120	25	CH Cl. mantana	39	(56.1) 58.7	(5.9) 5.5	(2.7) 2.2
Z	107	120	23	CH ₂ Cl ₂ –pentane CH ₂ Cl ₂ –MeOH	39	(58.8)	(5.4)	(2.2)
3	243	125	25	CH ₂ Cl ₂ -MeOH-pentane	55	60.1	5.2	1.8
3	243	123	23	erizeiz weeri pentane	33	(60.0)	(5.0)	(1.9)
4	122	110	20	CH ₂ Cl ₂ -pentane	68	49.5	6.0	3.2
•	122	110	20	CH ₂ Cl ₂ –MeOH	00	(49.4)	(6.0)	(3.2)
5	158	120	18	CH ₂ Cl ₂ -pentane	61	50.5	6.3	3.0
_				CH ₂ Cl ₂ –MeOH	~ -	(50.5)	(6.25)	(3.1)
6	300	125	4	CH ₂ Cl ₂ –MeOH	34	45.1	4.85	2.6
				2 2		(45.15)	(5.0)	(2.8)
7	57	120	27	CH ₂ Cl ₂ –MeOH	68	56.0	6.0	2.6
				2 2		(56.1)	(5.9)	(2.7)
8	122	110	20	CH ₂ Cl ₂ –MeOH	59	53.8	5.4	2.4
						(53.85)	(5.4)	(2.5)
9	300	125	4	CH ₂ Cl ₂ –MeOH–pentane	58	49.8	4.7	2.2
						(49.9)	(4.7)	(2.2)
10	57	120	27	CH ₂ Cl ₂ –MeOH–pentane	58	55.9	4.7	2.5
				CH ₂ Cl ₂ -hexane		(56.15)	(4.5)	(2.4)
11	57	120	27	CH ₂ Cl ₂ -MeOH-pentane	81	58.75	5.5	2.1
						(58.8)	(5.4)	(2.2)
12	57	120	27	CH ₂ Cl ₂ –MeOH–pentane	76	59.7	5.7	2.2
		4.50				(59.9)	(5.8)	(2.1)
13	57	120	27	CH ₂ Cl ₂ –MeOH–pentane	91	60.7	6.2	2.1
1.4	57	120	27	CH CL M OH	0.4	(60.9)	(6.1)	(2.0)
14	57	120	27	CH ₂ Cl ₂ –MeOH–pentane	94	61.9	6.6	2.0
15	71	105	20	CH CL M.OH	0.0	(61.9)	(6.5)	(1.95)
15	71	125	28	CH ₂ Cl ₂ –MeOH–pentane	88	55.2	4.9	2.4
16	71	125	28	CH ₂ Cl ₂ -hexane	74	(55.35) 57.9	(4.6)	(2.3) 2.2
10	/ 1	123	40	CH ₂ Cl ₂ –MeOH–pentane	74	(57.9)	5.55 (5.5)	(2.1)
17	71	125	28	CH ₂ Cl ₂ -MeOH-pentane	89	61.0	6.5	2.0
1/	/ 1	143	20	C112C12-WICO11-pentane	0,7	(61.0)	(6.5)	(1.9)
18	64	120	21	CH ₂ Cl ₂ -hexane	64	59.3	5.9	2.2
10	0-1	120	21	C112C12 Hexane	0-1	(59.3)	(5.6)	(2.2)
						(37.3)	(3.0)	(2.2)

^{*} Calculated values are given in parentheses.

narrower temperature range. The reduction of the liquidcrystalline domain was essentially due to the depression of the clearing temperature. This result was consistent with the data reported for 15–17: reduction of the molecular anisotropy resulted in a decrease of the molecular interactions and thus in the destabilization of the nematic phase.

Finally, the complexes studied showed good thermal stability as confirmed by thermogravimetry analysis: for example, a mass loss of 1, 5 and 10% was detected at 257, 294 and 304 °C, respectively, for 13.

Conclusion

Despite the bulky central cluster unit, we were able to obtain mesomorphic materials by a subtle combination of ligands L and substituents R. In order to generate mesomorphism, a minimum of two aromatic rings per ligand L was a necessary condition to thwart the large disruption of the molecular anisotropy. Similar conclusions were drawn for other calamitic metallomesogens containing bulky metallic fragments in the rigid core.³

It is important to note that the thermal behaviour shown by the complexes studied was dependent upon the type of carboxylato bridges. Accordingly, for the identical pyridine ligand $NC_5H_4(CO_2C_6H_4OC_{10}H_{21}-p)-p$, the mesophase was (i) suppressed for $R=CF_3$ (9), (ii) enantiotropic for R=H (8), C_6H_5 (11) and $C_6H_4CH_3-p$ (18) and (iii) monotropic for $R=C_6H_4OCH_3-p$ (16).

The case of complexes 10-18 suggests that the benzene rings of the carboxylato bridges interact with the aromatic rings

of the neighbouring pyridine ligand, allowing the complexes to be organized along one direction, with a certain degree of freedom, giving rise to a nematic type of molecular organization. Substitution in the para position by a methyl (18) or a methoxy group (15-17) resulted in a dramatic decrease of the thermal stability of the nematic phase. This is consistent with a disruption of the π - π interactions between the benzene rings of R and those of L of adjacent complexes, when the benzoato bridges are substituted by methyl or methoxy substituents, essentially due to steric hindrance. As for 8, the mesomorphism should be the consequence of the appropriate anisotropic structure giving rise to favourable lateral interactions (as also evidenced by the observation of the smectic C phase). Interestingly, the higher thermal stability of the nematic phase shown by 11 as compared to the one exhibited by 8 emphasizes the crucial role played by the π - π interactions (see above).

Finally, it is worth mentioning that this new family of metallomesogens represents rare examples of mesomorphic compounds containing covalent bonds between two metal atoms. They are of considerable interest in terms of their possible catalytic reactivity as shown recently for structurally related nonmesomorphic Ru–Ru complexes.¹⁶

Experimental

General comments

The high-temperature reactions were carried out under nitrogen using standard Schlenk techniques; all other manipulations

Table 3 Infrared and NMR data of complexes 1-18

	~ /	•	
Complex	$\tilde{v}_{(CO)}/cm^{-1}$ (thf)	$\delta_{\rm H}({\rm CDCl_3})^a$	$\delta_{\rm C}({\rm CDCl_3})^a$
1	2023s	^b 0.87 [6 H, t, J(H ₃ C-H ₂ C) 6.9, H ₃ C], 1.25–1.45 (28 H, m, 7	14.8 (CH ₃), 23.4 (CH ₂ CH ₃), 26.7 (CH ₂ CH ₂ CH ₂ O), 29.8
	1972m	H ₂ C), 1.83 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 3.92 [4	(CH_2CH_2O) , 30.0, 30.0, 30.2, 30.2 (4 CH_2), 32.6
	1941s	H, t, $J(OH_2C-H_2C)$ 6.6, H_2CO], $AA'XX'$ [6.74 (4 H, $HC^{4.6}$), 7.77 (4 H, $HC^{3.7}$)], $AA'XX'M$ [7.51 (4 H, $HC^{2',4'}$), 7.90	$(CH_2CH_2CH_3)$, 68.8 (CH_2O) , 114.1 $(C^{4,6})$, 125.5 $(C^{2',4'})$, 126.7 (C^2) , 132.2 $(C^{3,7})$, 138.0 $(C^{3'})$, 152.8 $(C^{1',5'})$, 162.5 (C^5) ,
		(2 H, HC^3) , 8.92 (4 H, HC ^{1/5})]	179.1 (RuCO), 205.0 (C¹)
2	2027s	^b 0.88 [6 H, t, J(H ₃ C-H ₂ C) 6.9, H ₃ C], 1.25-1.50 (28 H, m, 7	14.8 (CH ₃), 23.4 (CH ₂ CH ₃), 26.7 (CH ₂ CH ₂ CH ₂ O), 29.9
	1976m 1946s	H ₂ C), 1.78 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 3.94 [4 H, t, J(OH ₂ C-H ₂ C) 6.6, H ₂ CO], AA'BB' [6.90, 7.08 (4 H,	(CH ₂ CH ₂ O), 30.0, 30.1, 30.2, 30.3 (4 CH ₂), 32.6 (CH ₂ CH ₂ CH ₃), 69.1 (CH ₂ O), 115.8, 122.9 (C ^{10,14}), (C ^{11,13}),
	17 105	HC ^{10,14}), (4 H, HC ^{11,13})], AA'XX'M [7.57 (4 H, HC ^{2',4'}), 7.96	$(C^{1}, C^{2}, A^{2}), 130.4, 130.4, (C^{3,7}), (C^{4,6}), 132.9, (C^{5}), 138.3, (C^{2}), (C^{4,6}), (C^{4,$
		(2 H, HC ³ ′), 8.94 (4 H, HC ¹ ′,5′)], AA'BB' [7.97, 8.10 (4 H, HC ³ 7), (4 H, HC ⁴ 6)]	$138.4 (C^{3'}), 144.8 (C^{9}), 152.6 (C^{1',5'}), 157.7 (C^{12}), 165.8 (C^{8}), 179.6 (D. CO), 204.6 (Cl.)$
3	2027s	HC ^{3,7}), (4 H, HC ^{4,6})] ^b 0.89 [6 H, t, J(H ₃ C-H ₂ C) 6.9, H ₃ C], 1.25–1.50 (28 H, m, 7	178.6 (RuCO), 204.6 (C¹) 14.8 (CH ₃), 23.4 (CH ₂ CH ₃), 26.8 (CH ₂ CH ₂ CH ₂ O), 29.8
	1976m	H ₂ C), 1.82 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 4.04 [4	(CH_2CH_2O) , 30.0, 30.0, 30.2, 30.2 (4 CH_2), 32.6
	1946s	H, t $J(OH_2C-H_2C)$ 6.6, $H_2CO]$, $AA'XX'$ [6.97 (4 H, $HC^{18,20}$), 8.13 (4 H, $HC^{17,21}$)], $AA'BB'$ [7.25 (8 H, $HC^{10,14}$,	$(CH_2CH_2CH_3)$, 69.0 (CH_2O) , 115.0 $(C^{18,20})$, 122.0 (C^{16}) , 123.1, 123.5 $(C^{10,14})$, $(C^{11,13})$, 125.8 $(C^{2',4'})$, 130.5, 130.5 $(C^{3,7})$,
		$HC^{11,13}$), $AA'XX'M$ [7.59 (4 H, $HC^{2',4'}$), 7.98 (2 H, $HC^{3'}$),	$(C^{4,6})$, 132.6 (C^5) , 133.0 $(C^{17,21})$, 138.4 (C^3) , 138.5 (C^2) ,
		8.95 (4 H, HC ^{1′,5′})], AA'BB' [7.99, 8.12 (4 H, HC ^{3,7}), (4 H,	148.8, 149.3 (C ⁹), (C ¹²), 152.6 (C ^{1',5'}), 164.3, 165.2, 165.5
4	2025s	HC ^{4,6})] ^c 0.89 [6 H, t, J(H ₃ C-H ₂ C) 6.5, H ₃ C], 1.25–1.50 (28 H, m, 7	(C ⁸), (C ¹⁵), (C ¹⁹), 178.5 (RuCO), 207.8 (C ¹) 14.2 (CH ₃), 22.7 (<i>C</i> H ₂ CH ₃), 25.9 (<i>C</i> H ₂ CH ₂ CH ₂ O), 28.8
	1973m	H ₂ C), 1.83 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 4.06 [4	(CH ₂ CH ₂ O), 29.3, 29.3, 29.6, 29.6 (4 CH ₂), 31.9
	1943s	H, t, $J(OH_2C-H_2C)$ 6.6, $H_2CO]$, $AA'XX'$ [6.92 (4 H, $HC^{2,4}$), 8.55 (4 H, $HC^{1,5}$)], 8.34 (2 H, s, HCO_2)	(CH ₂ CH ₂ CH ₃), 68.7 (CH ₂ O), 111.6 (C ^{2,4}), 152.7 (C ^{1,5}), 166.2 (C ³), 174.5 (RuCO), 203.9 (C ¹)
5	2021s	^c 0.90 [6 H, t, J(H ₃ C-H ₂ C) 6.4, H ₃ C], 1.25–1.50 (28 H, m, 7	14.2 (CH ₃), 22.7 (CH ₂ CH ₃), 23.8 (CH ₃ CO ₂), 25.9
	1969m	H ₂ C), 1.83 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 2.05 (6	(CH ₂ CH ₂ CH ₂ O), 28.8 (CH ₂ CH ₂ O), 29.3, 29.4, 29.6, 29.6 (4
	1938s	H, s, H ₃ CCO ₂), 4.06 [4 H, t, J(OH ₂ C-H ₂ C) 6.4, H ₂ CO], AA'XX' [6.90 (4 H, HC ^{2,4}), 8.53 (4 H, HC ^{1,5})]	CH ₂), 31.9 (<i>C</i> H ₂ CH ₂ CH ₃), 68.6 (<i>C</i> H ₂ O), 111.4 (<i>C</i> ^{2,4}), 152.9 (<i>C</i> ^{1,5}), 166.0 (<i>C</i> ³), 184.5 (<i>RuCO</i>), 204.5 (<i>C</i> ^{1'})
6^d	2037s	^c 0.90 [6 H, t, $J(H_3C-H_2C)$ 6.4, H_3C], 1.25–1.50 (28 H, m, 7	14.2 (CH ₃), 22.8 (CH ₂ CH ₃), 25.9 (CH ₂ CH ₂ CH ₂ O), 28.8
	1986m 1958s	H ₂ C), 1.84 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 4.08 [4 H, t, J(OH ₂ C-H ₂ C) 6.5, H ₂ CO], AA'XX' [6.93 (4 H,	(CH ₂ CH ₂ O), 29.3, 29.3, 29.6, 29.6 (4 CH ₂), 31.9 (CH ₂ -CH ₂ CH ₃), 68.7 (CH ₂ O), 111.7 (C ^{2,4}), 114.9 [q, J(C-F) 290,
	17303	HC ^{2,4}), 8.43 (4 H, HC ^{1,5})]	CF_3 , 152.6 (C ^{1,5}), 166.4 (C ³), 169.5 [q, $J(FCCOORuCO)$ 40,
7	2022a	\$0.00 [6 H + 1/H C H C) 6 5 H C] 1.25 1.55 (20 H m 7	RuCO], 203.1 (C ¹)
7	2023s 1971m	^c 0.90 [6 H, t, <i>J</i> (<i>H</i> ₃ C–H ₂ C) 6.5, H ₃ C], 1.25–1.55 (28 H, m, 7 H ₂ C), 1.88 [4 H, qnt, <i>J</i> (OH ₂ C– <i>H</i> ₂ CH ₂ C) 7, H ₂ C], 4.13 [4	14.2 (CH ₃), 22.7 (CH ₂ CH ₃), 26.0 (CH ₂ CH ₂ CH ₂ O), 28.9 (CH ₂ CH ₂ O), 29.4, 29.4, 29.6, 29.6 (4 CH ₂), 32.0 (CH ₂ -
	1941s	H, t, $J(OH_2C-H_2C)$ 6.6, H_2CO], $AA'XX'$ [7.00 (4 H,	CH ₂ CH ₃), 68.6 (CH ₂ O), 111.3 (C ^{2,4}), 127.8 (C ^{4',6'}), 129.7 (4
		HC ^{2,4}), 8.71 (4 H, HC ^{1,5})], AA'BMM' [7.27 (4 H, HC ^{4,6}), 7.39 (2 H, HC ⁵), 7.87 (4 H, HC ^{3',7'})]	H, HC ^{3',7'}), 131.4, 133.7 (C ^{2'}), (C ^{5'}), 153.0 (C ^{1,5}), 166.1 (C ³), 178.6 (RuCO), 203.4 (C ^{1'})
8	2030s	^c 0.90 [6 H, t, J(H ₃ C-H ₂ C) 6.5, H ₃ C], 1.25–1.50 (28 H, m, 7	14.2 (CH ₃), 22.7 (CH ₂ CH ₃), 26.1 (CH ₂ CH ₂ CH ₂ O), 29.3
	1979m 1950s	H ₂ C), 1.81 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 3.98 [4 H, t, J(OH ₂ C-HC) 6.4, H ₂ CO], AA'BB' [6.96 (4 H, HC ^{9,11}),	(CH ₂ CH ₂ O), 29.4, 29.5, 29.6, 29.6 (4 CH ₂), 32.0 (CH ₂ -CH ₂ CH ₃), 68.5 (CH ₂ O), 115.3 (C ^{9,11}), 122.1 (C ^{8,12}), 124.9
	17503	7.15 (4 H, HC ^{8,12})], AA'XX' [8.17 (4 H, HC ^{2,4}), 9.00 (4 H,	$(C^{2,4})$, 138.4 (C^3) , 143.7 (C^7) , 152.7 $(C^{1,5})$, 157.4 (C^{10}) , 163.2
0^{d}	2041-	HC ^{1,5})], 8.36 (2 H, s, HCO ₂)	(C6), 174.6 (RuCO), 203.0 (C1')
9"	2041s 1992m	^c 0.90 [6 H, t, <i>J</i> (<i>H</i> ₃ C–H ₂ C) 6.5, H ₃ C], 1.25–1.55 (28 H, m, 7 H ₂ C), 1.81 [4 H, qnt, <i>J</i> (OH ₂ C– <i>H</i> ₂ CH ₂ C) 7, H ₂ C], 3.98	14.2 (CH ₃), 22.8 (CH ₂ CH ₃), 26.1 (CH ₂ CH ₂ CH ₂ O), 29.3 (CH ₂ CH ₂ O), 29.4, 29.5, 29.6, 29.6 (4 CH ₂), 32.0
	1964s	[4 H, t, J(OH ₂ C-H ₂ C) 6.4, H ₂ CO], AA'BB' [6.97 (4 H,	(CH ₂ CH ₂ CH ₃), 68.5 (CH ₂ O), 115.0 [q, J(C-F) 286, CF ₃],
		HC ^{9,11}), 7.15 (4 H, HC ^{8,12})], AA'XX' [8.22 (4 H, HC ^{2,4}), 8.88 (4 H, HC ^{1,5})]	115.3 (C ⁵ ,11), 122.0 (C ^{8,12}), 125.2 (C ^{2,4}), 138.8 (C ³), 143.7 (C ⁷), 152.5 (C ^{1.5}), 157.5 (C ¹⁰), 163.0 (C ⁶), 169.7 [q, J(FC-
		(411,110)]	COORu <i>C</i> O) 39, RuCO], 202.1 (C ¹)
10–14 ^e	2027s 1977m	^b 0.91 [6 H, t, $J(H_3C-H_2C)$ 6.5, H_3C], 1.25–1.55 (f 28 H, m, 7	14.8 (CH ₃), 23.4 (CH ₂ CH ₃), 26.7 (CH ₂ CH ₂ CH ₂ O), 29.9 (CH ₂ CH ₂ O), 30.0, 30.1, 30.3, 30.3 (^g 4 CH ₂), 32.6 (CH ₂ -
	1947s	H ₂ C), 1.82 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 4.00 [4 H, t, J(OH ₂ C-H ₂ C) 6.4, H ₂ CO], AA'BB' [6.99 (4 H,	CH_2CH_3), 69.2 (CH_2O), 116.0 ($C^{9,11}$), 122.7 ($C^{8,12}$), 125.4
		$HC^{9,11}$), 7.20 (4 H, $HC^{8,12}$)], AA'BMM' [7.31 (4 H, $HC^{4',6'}$),	$(C^{2,4})$, 128.6 $(C^{4',6'})$, 130.3 $(C^{3',7'})$, 132.4 $(C^{5'})$, 133.9 $(C^{2'})$,
		7.43 (2 H, HC ⁵ '), 7.87 (4 H, HC ^{3',7'})], AA'XX' [8.26 (4 H, HC ^{2,4}), 9.16 (4 H, HC ^{1,5})]	138.9 (C ³), 144.4 (C ⁷), 153.5 (C ^{1,5}), 158.1 (C ¹⁰), 164.1 (C ⁶), 179.5 (RuCO), 204.3 (C ¹)
15–17 ^e	2025s	^b 0.90 [6 H, t, J(H ₃ C-H ₂ C) 6.9, H ₃ C], 1.30–1.52 (^f 28 H, m, 7	14.8 (CH ₃), 23.4 (CH ₂ CH ₃), 26.7 (CH ₂ CH ₂ CH ₂ O), 29.9
	1975m	H ₂ C), 1.82 [4 H, qnt, J(OH ₂ C-H ₂ CH ₂ C) 7, H ₂ C], 3.79 (6	(CH ₂ CH ₂ O), 30.0, 30.1, 30.3, 30.3 (^g 4 CH ₂), 32.6 (CH ₂ -CH ₂ CH ₃), 56.0 (C ⁸), 69.2 (CH ₂ O), 113.7 (C ^{4',6'}), 116.0
	1945s	H, s, H_3C^8), 4.00 [4 H, t, $J(OH_2C-H_2C)$ 6.6, H_2CO], AA'XX' [6.79 (4 H, $HC^{4',6'}$), 7.81 (4 H, $HC^{3',7'}$)], AA'BB'	$(C^{9,11})$, 122.7 $(C^{8,12})$, 125.3 $(C^{2,4})$, 126.6 $(C^{2'})$, 132.2 $(C^{3',7'})$,
		[6.99 (4 H, HC ^{9,11}), 7.19 (4 H, HC ^{8,12})], AA'XX' [8.24 (4 H,	138.8 (C^3), 144.4 (C^7), 153.5 ($C^{1,5}$), 158.1 (C^{10}), 163.1 ($C^{5'}$),
18	2026s	HC ^{2,4}), 9.15 (4 H, HC ^{1,5})] ^b 0.92 [6 H, t, J(H ₃ C-H ₂ C) 6.8, H ₃ C], 1.28–1.52 (28 H, m, 7	164.1 (C ⁶), 179.1 (RuCO), 204.4 (C ¹) 14.1 (CH ₃), 21.5 (C ⁸), 22.7 (CH ₂ CH ₃), 26.0 (CH ₂ CH ₂ -
-	1976m	H_2C), 1.83 [4 H, qnt, $J(OH_2C-H_2CH_2C)$ 7, H_2C], 2.34 (6	CH ₂ O), 29.2 (CH ₂ CH ₂ O), 30.0, 30.1, 30.3, 30.3 (4 CH ₂),
	1946s	H, s, $H_3C^{8'}$), 4.01 [4 H, t, $J(OH_2C-H_2C)$ 6.6, H_2CO], AA'BB' [7.00 (4 H, $HC^{9,11}$), 7.21 (4 H, $HC^{8,12}$)], AA'XX'	32.6 (CH ₂ CH ₂ CH ₃), 68.5 (CH ₂ O), 115.3 (C ^{9,11}), 122.0 (C ^{8,12}), 124.6 (C ^{2,4}), 128.6 (C ^{4',6'}), 129.6 (C ^{3',7'}), 130.6 (C ^{2'}),
		$[7.10 (4 \text{ H}, \text{HC}^{4',6'}), 7.75 (4 \text{ H}, \text{HC}^{3',7'})], \text{AA'XX'} [8.25 (4 \text{ H}, \text{HC}^{3',7'})]$	$138.1 (C^3), 142.1 (C^{5'}), 143.7 (C^7), 152.8 (C^{1,5}), 157.4 (C^{10}),$
		$HC^{2,4}$), 9.15 (4 H, $HC^{1,5}$)]	163.4 (C 6), 178.8 (RuCO), 203.6 (C¹′)
a Numberir	ag of carbon	atoms of the ligands follows the description of the free carbons	dic acids and pyridines given in SLIP 57291: numbering of the

^a Numbering of carbon atoms of the ligands follows the description of the free carboxylic acids and pyridines given in SUP 57291; numbering of the second ligand is given with primed numbers and starts from the carbon atom closest to the ruthenium atom; J/Hz. ^b At 400 (¹H) and 100 MHz (¹³C). ^c At 200 (¹H) and 50 MHz (¹³C). ^d δ_F (188.15 MHz) 31.3 (CF₃). ^e Spectroscopic data given for complex with decyloxy chain. ^f Integral different for the other complexes. ^g Number of signals different for the other complexes.

were carried out in air. The solvents were distilled over drying agents and N_2 -saturated prior to use. The compound $[Ru_3(CO)_{12}]$ was synthesized following a published procedure. Acetic acid, benzoic acid, formic acid, p-methoxybenzoic acid

(purum), p-methylbenzoic acid (purum), trifluoroacetic acid (purum) and pyridine (purum) were puriss. p.a. quality from Fluka, unless stated otherwise, and used without further purification.

Instrumentation

The NMR spectra were recorded using a Varian Gemini 200 BB (200 MHz) or a Bruker AMX-400 (400 MHz) spectrometer. For the IR spectra a Perkin-Elmer 1720 FT-IR spectrometer was used. Transition temperatures (onset point) and enthalpies were determined with a Mettler DSC 30 differential scanning calorimeter connected to a Mettler TA 4000 processor, under N₂, at a rate of 10 °C min⁻¹. Data treatment used Mettler TA72.2/.5 GRAPHWARE: for complexes 1–10, first heating run; for 11–18, second heating run. Thermogravimetry analyses were performed with a Mettler TG 50 thermobalance connected to a Mettler TA 4000 processor, at a rate of 20 °C min⁻¹. Optical studies were conducted using a Zeiss-Axioscop polarizing microscope equipped with a Linkam-THMS-600 variable-temperature stage, under N₂.

The elemental analyses were carried out by the Mikroelementaranalytisches Laboratorium der ETH Zürich.

Synthesis of the complexes 1-18

A solution of $[Ru_3(CO)_{12}]$ (100 mg, 0.16 mmol) and the appropriate amount of the organic acid RCO₂H (see Table 2) in tetrahydrofuran was heated in a pressure Schlenk tube (300 cm³) according to the conditions indicated in Table 2. After cooling, the appropriate pyridine L (0.46 mmol) was added to the orange thf solution, resulting in an immediate colour change to yellow and in a shift of the characteristic three-band v_{CO} pattern of the IR spectrum to lower wavenumbers. The solution was stirred at room temperature for 1 h, then the solvent was evaporated and the complex isolated from the residue by crystallization using the solvent mixture given in Table 2. For the purpose of the analytical and thermal characterization, the complexes were crystallized once again and dried *in vacuo*. The IR and NMR data for complexes 1–18 are given in Table 3.

Acknowledgements

We are grateful to the Swiss National Science Foundation for financial support, to Ciba-Geigy-Jubiläums-Stiftung for a fellowship to B. D., and to the Johnson Matthey Technology Centre for a generous loan of ruthenium trichloride hydrate.

References

- 1 F. Reinitzer, Monatsh. Chem., 1888, 9, 421.
- 2 D. Pauluth and T. Geelhaar, *Nachr. Chem. Techn. Lab.*, 1997, **45**, 9.
- 3 D. W. Bruce, in *Inorganic Materials*, 2nd edn., eds. D. W. Bruce and D. O'Hare, Wiley, Chichester, 1996, ch. 8; *Metallomesogens: Synthesis, Properties and Applications*, ed. J. L. Serrano, VCH, Weinheim, 1996; R. Deschenaux and J. W. Goodby, in *Ferrocenes: Homogeneous Catalysis, Organic Synthesis and Materials Science*, eds. A. Togni and T. Hayashi, VCH, Weinheim, 1995, ch. 9.

- 4 A.-M. Giroud-Godquin, J.-C. Marchon, D. Guillon and A. Skoulios, J. Phys. Chem., 1986, 90, 5502; O. Poizat, D. P. Strommen, P. Maldivi, A.-M. Giroud-Godquin and J.-C. Marchon, Inorg. Chem., 1990, 29, 4851.
- P. Maldivi, A.-M. Giroud-Godquin, J.-C. Marchon, D. Guillon and A. Skoulios, *Chem. Phys. Lett.*, 1989, **157**, 552; J.-C. Marchon, P. Maldivi, A.-M. Giroud-Godquin, D. Guillon, A. Skoulios and D. P. Strommen, *Philos. Trans. R. Soc. London, Ser. A*, 1990, **330**, 109; L. Bonnet, F. D. Cukiernik, P. Maldivi, A.-M. Giroud-Godquin, J.-C. Marchon, M. Ibn-Elhaj, D. Guillon and A. Skoulios, *Chem. Mater.*, 1994, **6**, 31.
- 6 J. Barbera, M. A. Esteruelas, A.-M. Levelut, L. A. Oro, J. L. Serrano and E. Sola, *Inorg. Chem.*, 1992, 31, 732.
- R. H. Cayton, M. H. Chisholm and F. D. Darrington, Angew. Chem., Int. Ed. Engl., 1990, 29, 1481; D. V. Baxter, R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. F. Putilina, S. L. Tagg, J. L. Wesemann, J. W. Zwanziger and F. D. Darrington, J. Am. Chem. Soc., 1994, 116, 4551.
- 8 (a) J. Barbera, C. Cativiela, J. L. Serrano and M. M. Zurbano, *Adv. Mater.*, 1991, **3**, 602; (b) R. Atencio, J. Barbera, C. Cativiela, F. J. Lahoz, J. L. Serrano and M. M. Zurbano, *J. Am. Chem. Soc.*, 1994, **116**, 11 558.
- 9 G. R. Crooks, B. F. G. Johnson, J. Lewis, I. G. Williams and G. Gamlen, J. Chem. Soc. A, 1969, 2761.
- 10 M. Spohn, T. Vogt and J. Strähle, Z. Naturforsch., Teil B, 1986, 14, 1373
- 11 H. Schumann, J. Opitz and J. Pickardt, J. Organomet. Chem., 1977, 128, 253
- M. Bianchi, P. Frediani, U. Matteoli, G. Menchi, F. Piacenti and G. Petrucci, J. Organomet. Chem., 1983, 259, 207; S. J. Sherlock, M. Cowie, E. Singleton and M. M. de V. Steyn, Organometallics, 1988, 7, 1663; G. Süss-Fink, G. Herrmann, P. Morys, J. Ellermann and A. Veit, J. Organomet. Chem., 1985, 284, 263; G. F. Schmidt and G. Süss-Fink, J. Organomet. Chem., 1989, 362, 179; G. Süss-Fink, J. L. Wolfender, F. Neumann and H. Stæckli-Evans, Angew. Chem., Int. Ed. Engl., 1990, 29, 429; M. Rotem, Y. Shvo, I. Goldberg and U. Shmueli, Organometallics, 1984, 3, 1758; M. Rotem, I. Goldberg, U. Shmueli and Y. Shvo, J. Organomet. Chem., 1986, 314, 185; D. S. Bohle and H. Vahrenkamp, Inorg. Chem., 1990, 29, 1097.
- 13 J. Velker, G. Rheinwald and G. Süss-Fink, unpublished work; G. Rheinwald, Thèse de doctorat, Université de Neuchâtel, 1994.
- 14 R. Deschenaux, J.-L. Marendaz and J. Santiago, *Helv. Chim. Acta*, 1993, **76**, 865; D. W. Bruce and S. A. Hudson, *J. Mater. Chem.*, 1994, **4**, 479.
- (a) D. W. Bruce, B. Donnio, D. Guillon, B. Heinrich and M. Ibn-Elhaj, *Liq. Cryst.*, 1995, 19, 537; (b) F. Neve, *Adv. Mater.*, 1996, 8, 277; (c) J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow and J. A. Miguel, *Chem. Mater.*, 1996, 8, 2375; (d) S. Tantrawong and P. Styring, *Liq. Cryst.*, 1997, 22, 17.
- 16 C. Bruneau and P. H. Dixneuf, Chem. Commun., 1997, 507.
- 17 M. I. Bruce, C. M. Jensen and N. L. Jones, *Inorg. Synth.*, 1989, 26, 259.

Received 3rd July 1997; Paper 7/04712F